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Abstract. In this paper, a quantum cascade laser has been treated as a three-level system, and
the calculation of the spontaneous emission and gain spectra has been given. In the calculation,
the conduction band nonparabolicity and the injection and exit of electrons have been considered.
Results have shown that with increasing injection current, the spontaneous emission peak blue
shifts, and the peak intensity increases near linearly with current. With increasing temperatures,
the broadening of the spontaneous emission spectra has been attributed to the electron–optical
phonon interactions. The peak gain of the stimulated emission has been shown to be determined
mainly by the subband lifespans. We have pointed out that it is essential to obtain a long lifespan
for the second excited state and short lifespan for the first excited state in order to obtain efficient
population inversion and high peak gain for quantum cascade lasers.

1. Introduction

Quantum cascade (QC) lasers based on GaInAs/AlInAs heterostructures have been shown to
be new light sources working in the important infrared atmospheric window [1–5], which
used to be only accessible to cryogenic lead-salt lasers [6]. Compared with conventional
semiconductor lasers based on the recombination of electrons in the conduction band and holes
in the valence band, QC lasers need only electrons to transit between conduction subbands
created by quantum confinement, i.e. QC lasers are unipolar semiconductor lasers.

Since their first demonstration [1], QC lasers have been expected to exhibit the following
features as a characteristic of the intersubband transitions: (1) the lasers should be able
to operate in the wavelength region from a few micrometres to submillimetre, because the
emission wavelength is completely determined by the thickness of layers and not the bandgap
of the active materials in the case of conventional interband semiconductor lasers; (2) the gain
spectra should be narrow and symmetric; (3) a weak temperature dependence of the threshold
current should be available. Up to now, QC lasers based on GaInAs/AlInAs heterostructures
working at the wavelength from 3.4 µm to 17 µm have been demonstrated [7–9], while much
less effort has been spent on the gain spectra of QC lasers. Gelmont et al and Gorfinkel
et al reported their calculation of gain spectra for QC lasers based on an infinite-well model
and have achieved reasonable results [10, 11]. In this paper, it is our purpose to calculate the
spontaneous emission and gain spectra for practical QC lasers.

Figure 1 is a typical conduction band diagram of a portion of QC lasers working at
λ ∼ 5 µm. In figure 1, A.R. denotes the active region and the black areas are minibands
in the graded-gap superlattice, i.e., injection/relaxation region. Between the minibands are
minigaps where electrons are not allowed to exist. In the active region, electrons transit from
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Figure 1. Schematic conduction band diagram of a portion of the active region of a typicalλ ∼ 5µm
structure. The shaded areas indicate the allowed minibands of electrons in the injector region.

the n = 3 state to the n = 2 state and emit photons. The n = 2 state is promptly emptied by the
resonant scattering between the n = 2 state and n = 1 state with the help of optical phonons.
(τ21 ∼ 0.5 ps). Population inversion can be achieved between the n = 3 state and the n = 2
state because transition from the n = 3 state to the n = 2 state involves large momentum
transfer (τ32 ∼ 1.5 ps).

2. Methods

As has been pointed out by many authors, energy band nonparabolicity is a factor that
should not be ignored in semiconductor lasers [10–13]. In the present work, conduction
band nonparabolicity has been characterized with an energy-dependent effective mass. After
Sirtori et al [12], we start from the envelope-function Hamiltonian in the Kane approximation.
Considering the spin degeneracy and the decoupling of the heavy-hole state from the original
Hamiltonian, and adopting a proper unitary transformation to the reduced Hamiltonian, one
obtains

m(E, z) = m0
E − Ev(z)

Ep

(1)

which can be used to characterize the conduction band nonparabolicity. In equation (1) m0

is the static electron mass, z is the growth direction, Ev(z) is the band edge energy for the
effective valence band which is the result of the unitary transformation. Ev = (2Eth +Eso)/3,
where lh and so label light-hole and split-off position dependent band edges, and Ep is the
Kane energy. In this paper, E is measured from the bottom of the GaInAs conduction band,
Ev is taken as 0.92 eV and 1.23 eV for the GaInAs well and AlInAs barrier, respectively, and
Ep is taken as 21.9 eV. Substituting equation (1) into the expression

E = En +
h̄2k2

‖
2m(E)

(2)

under the envelope-function approximation, where En is the quantized energy as a result of the
confinement in the z direction, k‖ is the in-plane wavevector, h̄ is the reduced Planck constant,
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Figure 2. The E–k relationship for the subbands with conduction band nonparabolicity being
considered. The dashed arrows are associated with photon emission, while the solid arrows are
associated with phonon emission.

one can obtain a quadratic equation in E. Solving the equation one obtains

E = En +
Ev − En +

√
(Ev − En)2 + 2Eph̄

2k2
‖/m0

2
(3)

which is the E–k relationship under this approximation as schematically shown in figure 2.
Many calculated results after this approximation have been shown to be in excellent agreement
with experimental ones [12–14].

The transition rate for the emission of a photon if an electron is initially at state Eb is given
by Fermi’s golden rule and can be derived using the time-dependent perturbation theory as

Wems = 2π

h̄
|〈a|H ′|b〉|2δ(Ea − Eb + h̄ω) (4)

where Ea is the final state, ω is the photon frequency and H ′ is the perturbation Hamiltonian.
The total transition rate per unit volume (s−1 cm−1), taking into account the probability that
state b and state a are partly occupied, is

Rb→a = 2

V

∑
ka

∑
kb

2π

h̄
|H ′

ab|2δ(Ea − Eb + h̄ω)fb(1 − fa). (5)

In terms of the dipole moment, the spontaneous emission lineshape can be written as

I (h̄ω) ∼ πω

nrcε0

2

V

∑
ka

∑
kb

2π

h̄
|ê · µ̄ab|2δ(Ea − Eb + h̄ω)fb(1 − fa) (6)

wherenr is the refractive index, ε0 is the vacuum dielectricity, µab is the electric dipole moment,
c is the speed of light in free space and ê is the unit vector for electric field.

When the scattering relaxation is included, the delta function may be replaced by a
Lorentzian function with a linewidth $:

δ(Ea − Eb + h̄ω) → $/(2π)

(Ea − Eb + h̄ω)2 + ($/2)2
. (7)

Because of the selection rule, only TM modes exist for intersubband transitions in the
case of QC lasers [15], the two summations in expression (6) can be reduced to one and

I (h̄ω) ∼ πω

nrcε0

2

V

∑
kta

|µab|2($/2π)

(Ea − Eb + h̄ω)2 + ($/2)2
fb(1 − fa) (8)
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where kt is the in-plane wavevector, and |a〉, |b〉 are envelope functions for final (n = 2 in
figure 1) and initial (n = 3) subband states, respectively.

The summation in (8) can be replaced by an integral

2

V

∑
kt

= 1

2π2Lp

∫
d2kt = m∗

e

πh̄2Lp

∫
dEt (9)

where Lp is the thickness of one period in QC lasers, Et is the in-plane energy.
The distribution functions fb and fa are determined by their respective quasi-Fermi energy

levels and the Fermi–Dirac distribution for electrons,

fa = 1

1 + exp((Ea + Et − Fa)/kBT )
(10a)

fb = 1

1 + exp((Eb + Et − Fb)/kBT )
(10b)

where Fa and Fb are quasi-Fermi levels for a and b states, respectively, kB is the Boltzmann
constant and T is temperature. The Ea and Eb are quantized energies which can be readily
obtained by solving the Schrödinger equation [13, 14].

In the case of QC lasers where electrons are only injected into the n = 3 state, F3(Fb)
is determined to a large extent by the injection current, while F2(Fa) can be approximately
obtained by taking into account of the doping concentration and the electrons jumping from
the n = 3 state to the n = 2 state.

Gain in lasers can be expressed as

g(h̄ω) = Rb→a − Ra→b

(S/h̄ω)
=

(
ω

nrcε0

)
m∗

e

πh̄2Lp

×
∫ ∞

0
dEt

|µ23|2($/2π)

(E2 − E3 + h̄ω2) + ($/2)2
[f3(E) − f2(E)] (11)

where S represents area.

3. Results and discussion

3.1. Spontaneous emission spectra

The injection current density j can be estimated by

j = nev (12)

where e is the unit charge, n is the electron density, v is the transportation velocity of electrons,

v = Lp

τ
(13)

where τ is the time for an electron to pass through one period of a QC laser,

τ = τ32 + τ21 + τ1 + τgs (14)

where τ32, τ21 are transition times of electrons from the n = 3 to n = 2 state, and from the
n = 2 to n = 1 state, respectively, τ1 is the tunnelling time to the empty n = 1 state (see
figure 1), and τgs is the time for electrons to tunnel across the graded-gap superlattice region.

Substituting (13) into (12) one obtains

j = n2De
1

τ
(15)

where n2D is the injection sheet density.
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Figure 3. The calculated EL lineshape for the QC laser shown in figure 1 at T = 77 K and at
different injection currents. The threshold current has been assumed to be 1.5 A. The blue shift
of the peak with increasing current is an effect associated with the Stark effect of intersubband
transition.

When the injection current is small, electric luminescence (EL) can be obtained as a result
of spontaneous emission. At low temperatures, the n = 2 state can be regarded as empty
because of the short lifespan τ21, the small injection current density and the consequent small
number of injected electrons.

Because Fb is mainly determined by the injection current density, two features can be
expected for spontaneous emission spectra with increasing injection densities: (1) Blue shift
of the EL peak as a result of the increasing Fb and the increasing bias, since the V –I curve
exhibits a linear behaviour below threshold current. (2) Higher peak intensity because more
electrons are injected into the n = 3 state.

Figure 3 is the calculated EL lineshape taking the QC laser shown in figure 1 as an example
at T = 77 K and at different injection currents (the threshold current has been assumed to
be 1.5 A). The blue shift of the peak with increasing current is an effect associated with the
Stark effect of intersubband transition. The peak intensity has been shown to increase nearly
linearly with the injection current since at low temperature, the quasi-Fermi level almost
increases linearly with injection current density.

At higher temperatures, the broadening of the linewidth and the backfilling of electrons
from the ground state in the injection/relaxation region to the n = 2 state should be considered
[16]. As has been pointed out in our previous works [17], interface fluctuations are inevitable
even in molecular-beam-epitaxy-grown device quality materials. Taking into account the
electron–LO phonon interaction, like the photoluminescence linewidth [18], the EL linewidth
can be expressed as

$ = $i + $c

[
exp

(
h̄ωLO

kBT

)
− 1

]−1

(16)

where the temperature-independent term $i is composed of the intrinsic linewidth, linewidth
broadening caused by alloy scattering and linewidth broadening caused by interface roughness.
The second term in equation (16) represents the electron–LO phonon interaction. $i and $c are
empirically determined to be 15 meV and 18 meV respectively for the exemplified λ ∼ 5 µm
QC laser. The calculated spontaneous emission lineshapes for this structure at T = 10 K,
100 K, 200 K and 300 K are shown in figure 4. In the calculation, we have considered the
thermal backfilling, and the shrinkage of the conduction band offset, i.e. the well depth, with
increasing temperatures and the consequent energy shift.
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Figure 4. The calculated spontaneous emission lineshapes at T = 10 K, 100 K, 200 K and 300 K.
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Figure 5. The calculated EL integral intensity as a function of temperature (solid line). The solid
circles are experimental results after [19].

As is well known, one of the key features for photoluminescence (PL) used to
characterize the interband transitions is the thermal quenching of the integral intensity.
However, from figure 4, one can easily see that there is only a slight drop of intensity
with increasing temperature, as plotted in figure 5. The result is in good agreement with
experiments and can be attributed to the selected injection of electrons into the n = 3 state
[19].

3.2. Gain spectra

When the injection current density is large enough to be above the threshold current density,
the n = 2 state cannot be assumed to be empty any more. The empty time namely τ21 should
be taken into account.

For stimulated emission, dynamic equilibrium is achieved. Focusing on the n = 2 state
in figure 1, there should be

dn2 = A32n3 dt − A21n2 dt (17)

where the first term of the right side is the incoming electrons from the n = 3 state in time
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Figure 6. Calculated gain spectra of the QC laser for different population-inversion parameter
ξ = n2/n3 = τ21/τ32. The population inversion condition τ21 � τ32 can be readily obtained from
this figure.
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Figure 7. The calculated peak gain as a function of temperature.

interval dt , and the second term is the outgoing electrons to the n = 1 state in time dt . A is
Einstein’s coefficient, n is the number of electrons in a certain state.

For the dynamic equilibrium condition

dn2

dt
= 0 (18)

one obtains
n2

n3
= A32

A21
= τ21

τ32
. (19)

For different population-inversion parameter ξ = n2/n3 = τ21/τ32, the gain spectra of the QC
laser shown in figure 1 are calculated and shown in figure 6. In practical QC lasers, mirror loss
and waveguide loss should be considered, and the gain spectra will be vertically shifted by a
few tens of wavenumbers to discount the loss. The population inversion condition τ21 � τ32

can be readily obtained from figure 6.
Figure 7 is the calculated peak gain as a function of temperature for the same exemplified

structure. The peak gain is shown to decrease with increasing temperatures, and with increasing
population-inversion parameter ξ . It should be noted that peak in gain occurs at different
wavelengths for different temperatures; linear shift to longer wavelengths with increasing
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temperatures is expected within a rather large range of temperatures. In this way tunable QC
lasers have been achieved by tuning the heat-sink temperature [20, 21]. It is obvious that all
of the above calculations can be easily adapted to QC lasers working at other wavelengths.

4. Conclusion

In summary, by taking into account the conduction band nonparabolicity, and injection and
exit of electrons in and out of the active region, we have calculated the spontaneous emission
and gain spectra for quantum cascade lasers. A practical λ ∼ 5 µm quantum cascade laser is
taken as an example. The influence of temperature and population inversion parameter on the
spontaneous emission and gain spectra has been discussed.

Acknowledgments

The authors would like to thank Dr C Gmachl for helpful discussions. This work is supported
in part by the Chinese Academy of Sciences under contract No KJ951-B1-706-01.

References

[1] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y 1994 Science 264 553
[2] Scamarcio G, Capasso F, Sirtori C, Faist J, Hutchinson A L, Sivco D L and Cho A Y 1997 Science 276 5313
[3] Faist J, Capasso F, Sirtori C, Sivco D L, Hutchinson A L and Cho A Y 1997 Nature 387 777
[4] Gmachl C, Capasso F, Narimanov E E, Nockel J H, Stone A D, Faist J, Sivco D L and Cho A Y 1998 Science

280 1556
[5] Tredicucci A, Gmachl C, Capasso F, Sivco D L, Hutchinson A L and Cho A Y 1998 Nature 396 350
[6] Tacke M 1995 Infrared Phys. Technol. 36 447
[7] Capasso F, Faist J, Sirtori C and Cho A Y 1997 Solid State Commun. 102 231
[8] Faist J, Capasso F, Sivco D L, Hutchinson A L and Cho A Y 1998 Appl. Phys. Lett. 72 680
[9] Tredicucci A, Gmachl C, Capasso F, Sivco D L, Hutchinson A L and Cho A Y 1997 Appl. Phys. Lett. 71 638

[10] Gelmont B, Gorfinkel V and Luryi S 1996 Appl. Phys. Lett. 68 2171
[11] Gorfinkel V B, Luryi S and Gelmont B 1996 IEEE J. Quantum Electron. 32 1995
[12] Sirtori C, Capasso F, Faist J and Scandolo S 1994 Phys. Rev. B 50 8663
[13] Yang Q K and Li A Z 1999 Physica E 4 239
[14] Yang Q K and Li A Z 1999 Chin. Phys. Lett. 16 443
[15] Sirtori C, Capasso F, Faist J, Sivco D L, Hutchinson A L and Cho A Y 1995 Appl. Phys. Lett. 66 4
[16] Faist J, Capasso F, Sivco D L, Hutchinson A L, Sirtori C, Chu S N G and Cho A Y 1994 Appl. Phys. Lett. 65

2901
[17] Yang Q K, Chen J X and Li A Z 1999 J. Cryst. Growth at press
[18] Yang Q K, Chen J X and Li A Z 1998 J. Cryst. Growth 194 31
[19] Faist J, Capasso F, Sirtori C, Sivco D L, Baillargeon J N, Hutchinson A L and Cho A Y 1996 Appl. Phys. Lett.

68 3680
[20] Gmachl C, Capasso F, Faist J, Hutchinson A L, Tredicucci A, Sivco D L, Baillargeon J N, Chu S N G and

Cho A Y 1998 Appl. Phys. Lett. 72 1430
[21] Gmachl C, Tredicucci A, Capasso F, Hutchinson A L, Sivco D L, Baillargeon J N and Cho A Y 1998 Appl.

Phys. Lett. 72 3130


